A Random Sampling Technique for Training Support Vector Machines
نویسندگان
چکیده
Random sampling techniques have been developed for combinatorial optimization problems. In this note, we report an application of one of these techniques for training support vector machines (more precisely, primal-form maximal-margin classifiers) that solve two-group classification problems by using hyperplane classifiers. Through this research, we are aiming (I) to design efficient and theoretically guaranteed support vector machine training algorithms, and (II) to develop systematic and efficient methods for finding “outliers”, i.e., examples having an inherent error.
منابع مشابه
A Random Sampling Technique for Training Support Vector Machines (For Primal-Form Maximal-Margin Classifiers)
Random sampling techniques have been developed for combinatorial optimization problems. In this note, we report an application of one of these techniques for training support vector machines (more precisely, primal-form maximal-margin classifiers) that solve two-group classification problems by using hyperplane classifiers. Through this research, we are aiming (I) to design efficient and theore...
متن کاملA Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels
The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...
متن کاملSeparating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir
The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...
متن کاملProvably Fast Support Vector Regression Using Random Sampling
Support Vector Machines are a family of data analysis algorithms, based on convex Quadratic Programming. Their use has been demonstrated in classification, regression, and clustering problems. In previous work we have proved that a random sampling technique based on an evolving discrete probability distribution provides a training algorithm for Support Vector Classification with provably low ex...
متن کاملکاربرد الگوریتمهای دادهکاوی در تفکیک منابع رسوبی حوزۀ آبخیز نوده گناباد
Introduction: Reduction of sediment supply requires the implementation of soil conservation and sediment control programs in the form of watershed management plans. Sediment control programs require identifying the relative importance of sediment sources, their quantitative ascription and identification of critical areas within the watersheds. The sediment source ascription is involves two...
متن کامل